PERAMALAN HARGA MINYAK MENTAH INDONESIA JENIS SEPINGGAN YAKIN MIX MENGGUNAKAN MODEL HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE - NEURAL NETWORK
نویسندگان
چکیده
Peramalan merupakan salah satu bidang penelitian yang aktif artinya sampai saat ini masih terus dilakukan mengenai proses peramalan runtun waktu terkait dengan pengambilan keputusan. Metode berkembang menjadi semakin cepat mengikuti perkembangan zaman dan teknologi komputasi. Terdapat hal menarik dari tersebut ialah perbaikan metode bersifat hybrid, menggabungkan dua jenis atau lebih berbeda, diharapkan dapat cara efektif dalam meningkatkan akurasi dibandingkan hanya menerapkan saja. Salah hybrid digunakan adalah Autoregressive Integrated Moving Average (ARIMA) Neural Network (NN). Tujuan untuk memperoleh perbandingan kinerja harga minyak mentah Indonesia Sepinggan Yakin Mix antara model ARIMA ARIMA-NN tahun 2022. Berdasarkan hasil menggunakan ARIMA, tingkat diperoleh data yaitu ARIMA(0,1,1) sebesar 7,9661% ARIMA(2,1,0) 7,7816% ARIMA(0,1,1)-NN 1 neuron 7,0910%, 2 7,0696%, 3 7,0661% ARIMA(2,1,0)-NN 6,8972%, 6,8767%, 6,8692%. Kedua menghasilkan sangat akurat karena nilai MAPE kedua 10%. Namun 6 cenderung kecil ARIMA. Dengan demikian sebagai alternatif pemodelan bisa dimanfaatkan pertimbangan keputusan kebijakan energi sumber daya mineral khususnya industri
منابع مشابه
Forecasting Inflation: Autoregressive Integrated Moving Average Model
This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out ...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملDierential Geometry of Autoregressive Fractionally Integrated Moving Average Models
The di erential geometry of autoregressive fractionally integrated moving average processes is developed. Properties of Toeplitz forms associated with the spectral density functions of these long memory processes are used to compute the geometric quantities. The role of these geometric quantities on the asymptotic bias of the maximum likelihood estimates of the model parameters and on the Bartl...
متن کاملOn continuous-time autoregressive fractionally integrated moving average processes
In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...
متن کاملForecasting Time Series Data Using Hybrid Grey Relational Artificial Neural Network and Auto Regressive Integrated Moving Average Model
In business, industry and government agencies, anticipating future behavior that involves many critical variables for nation wealth creation is vitally important, thus the necessity to make precise decision by the policy makers is really essential. Consequently, an accurate and reliable forecast system is needed to compose such predictions. Accordingly, the aim of this research is to develop a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Riset Pembangunan
سال: 2023
ISSN: ['2654-3710', '2654-7872']
DOI: https://doi.org/10.36087/jrp.v5i2.138